Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201.976
Filtrar
1.
Nat Commun ; 15(1): 3223, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622146

RESUMO

Two-component systems, consisting of a histidine kinase and a response regulator, serve signal transduction in bacteria, often regulating transcription in response to environmental stimuli. Here, we identify a tandem serine histidine kinase function for KdpD, previously described as a histidine kinase of the KdpDE two-component system, which controls production of the potassium pump KdpFABC. We show that KdpD additionally mediates an inhibitory serine phosphorylation of KdpFABC at high potassium levels, using not its C-terminal histidine kinase domain but an N-terminal atypical serine kinase domain. Sequence analysis of KdpDs from different species highlights that some KdpDs are much shorter than others. We show that, while Escherichia coli KdpD's atypical serine kinase domain responds directly to potassium levels, a shorter version from Deinococcus geothermalis is controlled by second messenger cyclic di-AMP. Our findings add to the growing functional diversity of sensor kinases while simultaneously expanding the framework for regulatory mechanisms in bacterial potassium homeostasis.


Assuntos
Proteínas de Escherichia coli , Histidina Quinase/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforilação , Potássio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Proc Natl Acad Sci U S A ; 121(17): e2320312121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625935

RESUMO

In gram-positive bacteria, phosphorylated arginine functions as a protein degradation signal in a similar manner as ubiquitin in eukaryotes. The protein-arginine phosphorylation is mediated by the McsAB complex, where McsB possesses kinase activity and McsA modulates McsB activity. Although mcsA and mcsB are regulated within the same operon, the role of McsA in kinase activity has not yet been clarified. In this study, we determined the molecular mechanism by which McsA regulates kinase activity. The crystal structure of the McsAB complex shows that McsA binds to the McsB kinase domain through a second zinc-coordination domain and the subsequent loop region. This binding activates McsB kinase activity by rearranging the catalytic site, preventing McsB self-assembly, and enhancing stoichiometric substrate binding. The first zinc-coordination and coiled-coil domains of McsA further activate McsB by reassembling the McsAB oligomer. These results demonstrate that McsA is the regulatory subunit for the reconstitution of the protein-arginine kinase holoenzyme. This study provides structural insight into how protein-arginine kinase directs the cellular protein degradation system.


Assuntos
Arginina Quinase , Proteínas Quinases , Proteínas Quinases/metabolismo , Arginina Quinase/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Fosforilação , Zinco
3.
Euro Surveill ; 29(15)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606569

RESUMO

BackgroundAs increasing antibiotic resistance in Acinetobacter baumannii poses a global healthcare challenge, understanding its evolution is crucial for effective control strategies.AimWe aimed to evaluate the epidemiology, antimicrobial susceptibility and main resistance mechanisms of Acinetobacter spp. in Spain in 2020, and to explore temporal trends of A. baumannii.MethodsWe collected 199 single-patient Acinetobacter spp. clinical isolates in 2020 from 18 Spanish tertiary hospitals. Minimum inhibitory concentrations (MICs) for nine antimicrobials were determined. Short-read sequencing was performed for all isolates, and targeted long-read sequencing for A. baumannii. Resistance mechanisms, phylogenetics and clonality were assessed. Findings on resistance rates and infection types were compared with data from 2000 and 2010.ResultsCefiderocol and colistin exhibited the highest activity against A. baumannii, although colistin susceptibility has significantly declined over 2 decades. A. non-baumannii strains were highly susceptible to most tested antibiotics. Of the A. baumannii isolates, 47.5% (56/118) were multidrug-resistant (MDR). Phylogeny and clonal relationship analysis of A. baumannii revealed five prevalent international clones, notably IC2 (ST2, n = 52; ST745, n = 4) and IC1 (ST1, n = 14), and some episodes of clonal dissemination. Genes bla OXA-23, bla OXA-58 and bla OXA-24/40 were identified in 49 (41.5%), eight (6.8%) and one (0.8%) A. baumannii isolates, respectively. ISAba1 was found upstream of the gene (a bla OXA-51-like) in 10 isolates.ConclusionsThe emergence of OXA-23-producing ST1 and ST2, the predominant MDR lineages, shows a pivotal shift in carbapenem-resistant A. baumannii (CRAB) epidemiology in Spain. Coupled with increased colistin resistance, these changes underscore notable alterations in regional antimicrobial resistance dynamics.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Colistina/farmacologia , beta-Lactamases/genética , Proteína 1 Semelhante a Receptor de Interleucina-1 , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , Antibacterianos/farmacologia , Acinetobacter baumannii/genética , Genômica , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética
4.
Euro Surveill ; 29(15)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606571

RESUMO

BackgroundCarbapenemase-producing Enterobacterales are a public health threat worldwide and OXA-48 is the most prevalent carbapenemase in Germany and western Europe. However, the molecular epidemiology of OXA-48 in species other than Escherichia coli and Klebsiella pneumoniae remains poorly understood.AimTo analyse the molecular epidemiology of OXA-48 and OXA-48-like carbapenemases in Citrobacter species (spp.) in Germany between 2011 and 2022.MethodsData of 26,822 Enterobacterales isolates sent to the National Reference Centre (NRC) for Gram-negative bacteria were evaluated. Ninety-one Citrobacter isolates from 40 German hospitals harbouring bla OXA-48/OXA-48­like were analysed by whole genome sequencing and conjugation experiments.ResultsThe frequency of OXA-48 in Citrobacter freundii (CF) has increased steadily since 2011 and is now the most prevalent carbapenemase in this species in Germany. Among 91 in-depth analysed Citrobacter spp. isolates, CF (n = 73) and C. koseri (n = 8) were the most common species and OXA-48 was the most common variant (n = 77), followed by OXA-162 (n = 11) and OXA­181 (n = 3). Forty percent of the isolates belonged to only two sequence types (ST19 and ST22), while most other STs were singletons. The plasmids harbouring bla OXA­48 and bla OXA-162 belonged to the plasmid types IncL (n = 85) or IncF (n = 3), and plasmids harbouring bla OXA­181 to IncX3 (n = 3). Three IncL plasmid clusters (57/85 IncL plasmids) were identified, which were highly transferable in contrast to sporadic plasmids.ConclusionIn CF in Germany, OXA-48 is the predominant carbapenemase. Dissemination is likely due to distinct highly transmissible plasmids harbouring bla OXA­48 or bla OXA-48-like and the spread of the high-risk clonal lineages ST19 and ST22.


Assuntos
Proteínas de Bactérias , Citrobacter , Humanos , Citrobacter/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , Plasmídeos/genética , Klebsiella pneumoniae/genética , Escherichia coli/genética , Sequenciamento Completo do Genoma , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
5.
Sci Rep ; 14(1): 7797, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565565

RESUMO

Bacterial pathogens adapt and replicate within host cells, while host cells develop mechanisms to eliminate them. Using a dual proteomic approach, we characterized the intra-macrophage proteome of the facultative intracellular pathogen, Francisella novicida. More than 900 Francisella proteins were identified in infected macrophages after a 10-h infection. Biotin biosynthesis-related proteins were upregulated, emphasizing the role of biotin-associated genes in Francisella replication. Conversely, proteins encoded by the Francisella pathogenicity island (FPI) were downregulated, supporting the importance of the F. tularensis Type VI Secretion System for vacuole escape, not cytosolic replication. In the host cell, over 300 proteins showed differential expression among the 6200 identified during infection. The most upregulated host protein was cis-aconitate decarboxylase IRG1, known for itaconate production with antimicrobial properties in Francisella. Surprisingly, disrupting IRG1 expression did not impact Francisella's intracellular life cycle, suggesting redundancy with other immune proteins or inclusion in larger complexes. Over-representation analysis highlighted cell-cell contact and actin polymerization in macrophage deregulated proteins. Using flow cytometry and live cell imaging, we demonstrated that merocytophagy involves diverse cell-to-cell contacts and actin polymerization-dependent processes. These findings lay the groundwork for further exploration of merocytophagy and its molecular mechanisms in future research.Data are available via ProteomeXchange with identifier PXD035145.


Assuntos
Francisella tularensis , Tularemia , Animais , Francisella tularensis/genética , Actinas/metabolismo , Biotina/metabolismo , Proteômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Macrófagos/metabolismo , Estágios do Ciclo de Vida , Tularemia/microbiologia , Ilhas Genômicas
6.
Nat Commun ; 15(1): 2845, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565859

RESUMO

Near-infrared-I/II fluorescent proteins (NIR-I/II FPs) are crucial for in vivo imaging, yet the current NIR-I/II FPs face challenges including scarcity, the requirement for chromophore maturation, and limited emission wavelengths (typically < 800 nm). Here, we utilize synthetic protein-seeking NIR-II dyes as chromophores, which covalently bind to tag proteins (e.g., human serum albumin, HSA) through a site-specific nucleophilic substitution reaction, thereby creating proof-of-concept biomimetic NIR-II FPs. This chemogenic protein-seeking strategy can be accomplished under gentle physiological conditions without catalysis. Proteomics analysis identifies specific binding site (Cys 477 on DIII). NIR-II FPs significantly enhance chromophore brightness and photostability, while improving biocompatibility, allowing for high-performance NIR-II lymphography and angiography. This strategy is universal and applicable in creating a wide range of spectrally separated NIR-I/II FPs for real-time visualization of multiple biological events. Overall, this straightforward biomimetic approach holds the potential to transform fluorescent protein-based bioimaging and enables in-situ albumin targeting to create NIR-I/II FPs for deep-tissue imaging in live organisms.


Assuntos
Biomimética , Corantes , Humanos , Proteínas Luminescentes/metabolismo , Diagnóstico por Imagem , Proteínas de Bactérias/metabolismo , Corantes Fluorescentes , Imagem Óptica/métodos
7.
Nat Commun ; 15(1): 2711, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565864

RESUMO

Regulatory arrest peptides interact with specific residues on bacterial ribosomes and arrest their own translation. Here, we analyse over 30,000 bacterial genome sequences to identify additional Sec/YidC-related arrest peptides, followed by in vivo and in vitro analyses. We find that Sec/YidC-related arrest peptides show patchy, but widespread, phylogenetic distribution throughout the bacterial domain. Several of the identified peptides contain distinct conserved sequences near the C-termini, but are still able to efficiently stall bacterial ribosomes in vitro and in vivo. In addition, we identify many arrest peptides that share an R-A-P-P-like sequence, suggesting that this sequence might serve as a common evolutionary seed to overcome ribosomal structural differences across species.


Assuntos
Proteínas de Escherichia coli , Biossíntese de Proteínas , Filogenia , Peptídeos/química , Ribossomos/genética , Ribossomos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo
8.
Front Cell Infect Microbiol ; 14: 1345935, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572315

RESUMO

Introduction: Bacterial resistance is a major threat to public health worldwide. To gain an understanding of the clinical infection distribution, drug resistance information, and genotype of CRE in Dongguan, China, as well as the resistance of relevant genotypes to CAZ-AVI, this research aims to improve drug resistance monitoring information in Dongguan and provide a reliable basis for the clinical control and treatment of CRE infection. Methods: VITEK-2 Compact automatic analyzer was utilized to identify 516 strains of CRE collected from January 2017 to June 2023. To determine drug sensitivity, the K-B method, E-test, and MIC methods were used. From June 2022 to June 2023, 80 CRE strains were selected, and GeneXpert Carba-R was used to detect and identify the genotype of the carbapenemase present in the collected CRE strains. An in-depth analysis was conducted on the CAZ-AVI in vitro drug sensitivity activity of various genotypes of CRE, and the results were statistically evaluated using SPSS 23.0 and WHONET 5.6 software. Results: This study identified 516 CRE strains, with the majority (70.16%) being K.pneumoniae, followed by E.coli (18.99%). Respiratory specimens had highest detection rate with 53.77% identified, whereas urine specimens had the second highest detection rate with 17.99%. From June 2022 to June 2023, 95% of the strains tested using the CRE GeneXpert Carba-R assay possessed carbapenemase genes, of which 32.5% were blaNDM strains and 61.25% blaKPC strains. The results showed that CRE strains containing blaKPC had a significantly higher rate of resistance to amikacin, cefepime, and aztreonam than those harboring blaNDM. Conclusions: The CRE strains isolated from Dongguan region demonstrated a high resistance rate to various antibiotics used in clinical practice but a low resistance rate to tigecycline. These strains produce Class A serine carbapenemases and Class B metals ß-lactamases, with the majority of them carrying blaNDM and blaKPC. Notably, CRE strains with blaKPC and blaNDM had significantly lower resistance rates to tigecycline. CAZ-AVI showed a good sensitivity rate with no resistance to CRE strains carrying blaKPC. Therefore, CAZ-AVI and tigecycline should be used as a guide for rational use of antibiotics in clinical practice to effectively treat CRE.


Assuntos
Compostos Azabicíclicos , Carbapenêmicos , Ceftazidima , Enterobacteriaceae , Enterobacteriaceae/genética , Carbapenêmicos/farmacologia , Tigeciclina/farmacologia , Sistemas de Distribuição no Hospital , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Combinação de Medicamentos , beta-Lactamases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Cefalosporinas/farmacologia , Klebsiella pneumoniae/genética , Genótipo , Testes de Sensibilidade Microbiana
9.
J Water Health ; 22(3): 572-583, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557572

RESUMO

Beta-lactamase-producing Enterobacterales bacteria cause severe hard-to-treat infections. Currently, they are spreading beyond hospitals and becoming a serious global health concern. This study investigated the prevalence and molecular characterization of extended-spectrum ß-lactamase and AmpC-type ß-lactamase-producing Enterobacterales (ESBL-PE, AmpC-PE) in wastewater from livestock and poultry slaughterhouses in Ardabil, Iran. A total of 80 Enterobacterales bacteria belonging to 9 species were identified. Among the isolates, Escherichia coli (n = 21/80; 26.2%) and Citrobacter spp. (n = 18/80; 22.5%) exhibited the highest frequency. Overall, 18.7% (n = 15/80) and 2.5% (n = 2/80) of Enterobacterales were found to be ESBL and AmpC producers, respectively. The most common ESBL producer isolates were E. coli (n = 9/21; 42.8%) and Klebsiella pneumoniae (n = 6/7; 85.7%). All AmpC-PE isolates belonged to E. coli strains (n = 2/21; 9.5%). In this study, 80% of ESBL-PE and 100% of AmpC-PE isolates were recovered from poultry slaughterhouse wastewater. All ESBL-PE and AmpC-PE isolates were multidrug-resistant. In total, 93.3% of ESBL-PE isolates harbored the blaCTX-M gene, with the blaCTX-M-15 being the most common subgroup. The emergence of ESBL-PE and AmpC-PE in wastewater of food-producing animals allows for zoonotic transmission to humans through contaminated food products and contaminations of the environment.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Humanos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Aves Domésticas/microbiologia , Matadouros , Gado , Águas Residuárias , Prevalência , Irã (Geográfico) , Antibacterianos , beta-Lactamases/genética , Proteínas de Bactérias/genética , Bactérias
10.
PLoS One ; 19(4): e0298680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557757

RESUMO

In the dairy industry bacteriophage (phage) contamination significantly impairs the production and quality of products like yogurt and cheese. To combat this issue, the strains of bacteria used as starter cultures possess mechanisms that make them resistant to phage infection, such as envelope resistance, or processes that render them immune to phage infection, such as restriction-modification and CRISPR-Cas. Lactococcus lactis, used to manufacture cheese and other dairy products, can also block the reproduction of infecting phages by abortive infection (Abi), a process in which phage-infected cells die before the phage replicate. We employ mathematical-computer simulation models and experiments with two Lactococcus lactis strains and two lytic phages to investigate the conditions under which Abi can limit the proliferation of phages in L. lactis populations and prevent the extinction of their populations by these viruses. According to our model, if Abi is almost perfect and there are no other populations of bacteria capable of supporting the replication of the L. lactis phages, Abi can protect bacterial populations from succumbing to infections with these viruses. This prediction is supported by the results of our experiment, which indicate that Abi can help protect L. lactis populations from extinction by lytic phage infections. However, our results also predict abortive infection is only one element of L. lactis defenses against phage infection. Mutant phages that can circumvent the Abi systems of these bacteria emerge. The survival of L. lactis populations then depends on the evolution of envelope mutants that are resistant to the evolved host-range phage.


Assuntos
Bacteriófagos , Lactococcus lactis , Bacteriófagos/genética , Lactococcus lactis/genética , Simulação por Computador , Proteínas de Bactérias , Bactérias
11.
Microb Cell Fact ; 23(1): 103, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584273

RESUMO

BACKGROUND: The macrolide antibiotic avermectin, a natural product derived from Streptomyces avermitilis, finds extensive applications in agriculture, animal husbandry and medicine. The mtrA (sav_5063) gene functions as a transcriptional regulator belonging to the OmpR family. As a pleiotropic regulator, mtrA not only influences the growth, development, and morphological differentiation of strains but also modulates genes associated with primary metabolism. However, the regulatory role of MtrA in avermectin biosynthesis remains to be elucidated. RESULTS: In this study, we demonstrated that MtrA, a novel OmpR-family transcriptional regulator in S. avermitilis, exerts global regulator effects by negatively regulating avermectin biosynthesis and cell growth while positively controlling morphological differentiation. The deletion of the mtrA gene resulted in an increase in avermectin production, accompanied by a reduction in biomass and a delay in the formation of aerial hyphae and spores. The Electrophoretic Mobility Shift Assay (EMSA) revealed that MtrA exhibited binding affinity towards the upstream region of aveR, the intergenic region between aveA1 and aveA2 genes, as well as the upstream region of aveBVIII in vitro. These findings suggest that MtrA exerts a negative regulatory effect on avermectin biosynthesis by modulating the expression of avermectin biosynthesis cluster genes. Transcriptome sequencing and fluorescence quantitative PCR analysis showed that mtrA deletion increased the transcript levels of the cluster genes aveR, aveA1, aveA2, aveC, aveE, aveA4 and orf-1, which explains the observed increase in avermectin production in the knockout strain. Furthermore, our findings demonstrate that MtrA positively regulates the cell division and differentiation genes bldM and ssgC, while exerting a negative regulatory effect on bldD, thereby modulating the primary metabolic processes associated with cell division, differentiation and growth in S. avermitilis, consequently impacting avermectin biosynthesis. CONCLUSIONS: In this study, we investigated the negative regulatory effect of the global regulator MtrA on avermectin biosynthesis and its effects on morphological differentiation and cell growth, and elucidated its transcriptional regulatory mechanism. Our findings indicate that MtrA plays crucial roles not only in the biosynthesis of avermectin but also in coordinating intricate physiological processes in S. avermitilis. These findings provide insights into the synthesis of avermectin and shed light on the primary and secondary metabolism of S. avermitilis mediated by OmpR-family regulators.


Assuntos
Ivermectina , Ivermectina/análogos & derivados , Streptomyces , Ivermectina/metabolismo , Streptomyces/metabolismo , Macrolídeos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo
12.
Front Cell Infect Microbiol ; 14: 1380747, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585655

RESUMO

Introduction: Bacterial biofilm is a well-known characteristic that plays important roles in diverse physiological functions, whereas the current intrinsic regulatory mechanism of its formation is still largely unknown. Methods: In the present study, a label-free based quantitative proteomics technology was conducted to compare the differentially expressed proteins (DEPs) between ΔuidR and the wild-type strain in the biofilm state. Results: The results showed that the deletion of gene uidR encoding a TetR transcriptional regulator significantly increased the biofilm formation in Aeromonas hydrophila. And there was a total of 220 DEPs, including 120 up-regulated proteins and 100 down-regulated proteins between ΔuidR and the wild-type strain based on the quantitative proteomics. Bioinformatics analysis suggested that uidR may affect bacterial biofilm formation by regulating some related proteins in glyoxylic acid and dicarboxylic acid pathway. The expressions of selected proteins involved in this pathway were further confirmed by q-PCR assay, and the results was in accordance with the quantitative proteomics data. Moreover, the deletion of four genes (AHA_3063, AHA_3062, AHA_4140 and aceB) related to the glyoxylic acid and dicarboxylic acid pathway lead to a significant decrease in the biofilm formation. Discussion: Thus, the results indicated that uidR involved in the regulatory of bacterial biofilm formation, and it may provide a potential target for the drug development and a new clue for the prevention of pathogenic A. hydrophila in the future.


Assuntos
Aeromonas hydrophila , Proteínas de Bactérias , Glioxilatos , Proteínas de Bactérias/metabolismo , Aeromonas hydrophila/metabolismo , Proteômica/métodos , Biofilmes
13.
Mol Plant Pathol ; 25(4): e13451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590135

RESUMO

When compared with other phylogroups (PGs) of the Pseudomonas syringae species complex, P. syringae pv. syringae (Pss) strains within PG2 have a reduced repertoire of type III effectors (T3Es) but produce several phytotoxins. Effectors within the cherry pathogen Pss 9644 were grouped based on their frequency in strains from Prunus as the conserved effector locus (CEL) common to most P. syringae pathogens; a core of effectors common to PG2; a set of PRUNUS effectors common to cherry pathogens; and a FLEXIBLE set of T3Es. Pss 9644 also contains gene clusters for biosynthesis of toxins syringomycin, syringopeptin and syringolin A. After confirmation of virulence gene expression, mutants with a sequential series of T3E and toxin deletions were pathogenicity tested on wood, leaves and fruits of sweet cherry (Prunus avium) and leaves of ornamental cherry (Prunus incisa). The toxins had a key role in disease development in fruits but were less important in leaves and wood. An effectorless mutant retained some pathogenicity to fruit but not wood or leaves. Striking redundancy was observed amongst effector groups. The CEL effectors have important roles during the early stages of leaf infection and possibly acted synergistically with toxins in all tissues. Deletion of separate groups of T3Es had more effect in P. incisa than in P. avium. Mixed inocula were used to complement the toxin mutations in trans and indicated that strain mixtures may be important in the field. Our results highlight the niche-specific role of toxins in P. avium tissues and the complexity of effector redundancy in the pathogen Pss 9644.


Assuntos
Prunus avium , Prunus , Virulência/genética , Pseudomonas syringae , Prunus avium/metabolismo , Frutas/metabolismo , Mutação/genética , Prunus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
14.
Protein Sci ; 33(5): e4981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591662

RESUMO

Translesion DNA synthesis pathways are necessary to ensure bacterial replication in the presence of DNA damage. Translesion DNA synthesis carried out by the PolV mutasome is well-studied in Escherichia coli, but ~one third of bacteria use a functionally homologous protein complex, consisting of ImuA, ImuB, and ImuC (also called DnaE2). Numerous in vivo studies have shown that all three proteins are required for translesion DNA synthesis and that ImuC is the error-prone polymerase, but the roles of ImuA and ImuB are unclear. Here we carry out biochemical characterization of ImuA and a truncation of ImuB from Myxococcus xanthus. We find that ImuA is an ATPase, with ATPase activity enhanced in the presence of DNA. The ATPase activity is likely regulated by the C-terminus, as loss of the ImuA C-terminus results in DNA-independent ATP hydrolysis. We also find that ImuA binds a variety of DNA substrates, with DNA binding affinity affected by the addition of ADP or adenylyl-imidodiphosphate. An ImuB truncation also binds DNA, with lower affinity than ImuA. In the absence of DNA, ImuA directly binds ImuB with moderate affinity. Finally, we show that ImuA and ImuB self-interact, but that ImuA is predominantly a monomer, while truncated ImuB is a trimer in vitro. Together, with our findings and the current literature in the field, we suggest a model for translesion DNA synthesis, where a trimeric ImuB would provide sufficient binding sites for DNA, the ß-clamp, ImuC, and ImuA, and where ImuA ATPase activity may regulate assembly and disassembly of the translesion DNA synthesis complex.


Assuntos
Myxococcus xanthus , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , 60535 , Escherichia coli/genética , Escherichia coli/metabolismo , DNA/genética , Replicação do DNA
15.
Infect Immun ; 92(4): e0034523, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591895

RESUMO

Listeria monocytogenes is well recognized for both its broad resistance to stress conditions and its ability to transition from a soil bacterium to an intracellular pathogen of mammalian hosts. The bacterium's impressive ability to adapt to changing environments and conditions requires the rapid sensing of environmental cues and the coordinated response of gene products that enable bacterial growth and survival. Two-component signaling systems (TCSs) have been long recognized for their ability to detect environmental stimuli and transmit those signals into transcriptional responses; however, often the precise nature of the stimulus triggering TCS responses can be challenging to define. L. monocytogenes has up to 16 TCSs that have been recognized based on homology and included in this list are several whose functions remain poorly described. This review highlights the current understanding of the breadth and scope of L. monocytogenes TCS as relates to stress resistance and pathogenesis. Precise signals still often remain elusive, but the gene networks associated with TCSs are providing clues into possible functions.


Assuntos
Listeria monocytogenes , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/genética , Mamíferos , Transdução de Sinais
16.
Curr Biol ; 34(7): R267-R268, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593766

RESUMO

In this Quick guide, Palmer and Berks introduce the twin-arginine translocation (Tat) systems. Tats are found in a variety of microbes and microbe-derived organelles, and are known to translocate folded substrate proteins across biological membranes.


Assuntos
Proteínas de Escherichia coli , Sistema de Translocação de Argininas Geminadas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Sistema de Translocação de Argininas Geminadas/metabolismo , Membrana Celular/metabolismo , Arginina/metabolismo , Transporte Proteico , Sinais Direcionadores de Proteínas , Proteínas de Bactérias/metabolismo
17.
Front Cell Infect Microbiol ; 14: 1380976, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596648

RESUMO

Introduction: The hemin acquisition system is composed of an outer membrane TonB-dependent transporter that internalizes hemin into the periplasm, periplasmic hemin-binding proteins to shuttle hemin, an inner membrane transporter that transports hemin into the cytoplasm, and cytoplasmic heme oxygenase to release iron. Fur and HemP are two known regulators involved in the regulation of hemin acquisition. The hemin acquisition system of Stenotrophomonas maltophilia is poorly understood, with the exception of HemA as a TonB-dependent transporter for hemin uptake. Methods: Putative candidates responsible for hemin acquisition were selected via a homolog search and a whole-genome survey of S. maltophilia. Operon verification was performed by reverse transcription-polymerase chain reaction. The involvement of candidate genes in hemin acquisition was assessed using an in-frame deletion mutant construct and iron utilization assays. The transcript levels of candidate genes were determined using quantitative polymerase chain reaction. Results: Smlt3896-hemU-exbB2-exbD2-tonB2 and tonB1-exbB1-exbD1a-exbD1b operons were selected as candidates for hemin acquisition. Compared with the parental strain, hemU and tonB1 mutants displayed a defect in their ability to use hemin as the sole iron source for growth. However, hemin utilization by the Smlt3896 and tonB2 mutants was comparable to that of the parental strain. HemA expression was repressed by Fur in iron-replete conditions and derepressed in iron-depleted conditions. HemP negatively regulated hemA expression. Like hemA, hemU was repressed by Fur in iron-replete conditions; however, hemU was moderately derepressed in response to iron-depleted stress and fully derepressed when hemin was present. Unlike hemA and hemU, the TonB1-exbB1-exbD1a-exbD1b operon was constitutively expressed, regardless of the iron level or the presence of hemin, and Fur and HemP had no influence on its expression. Conclusion: HemA, HemU, and TonB1 contribute to hemin acquisition in S. maltophilia. Fur represses the expression of hemA and hemU in iron-replete conditions. HemA expression is regulated by low iron levels, and HemP acts as a negative regulator of this regulatory circuit. HemU expression is regulated by low iron and hemin levels in a hemP-dependent manner.


Assuntos
Hemina , Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ferro/metabolismo
18.
BMC Microbiol ; 24(1): 109, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565985

RESUMO

BACKGROUND: The current understanding of acquired chromosomal colistin resistance mechanisms in Enterobacterales primarily involves the disruption of the upstream PmrAB and PhoPQ two-component system (TCS) control caused by mutations in the regulatory genes. Interestingly, previous studies have yielded conflicting results regarding the interaction of regulatory genes related to colistin resistance in Escherichia coli, specifically those surrounding PhoPQ and PmrAB TCS. RESULTS: In our study, we focused on two clinical non-mcr colistin-resistant strains of E. coli, TSAREC02 and TSAREC03, to gain a better understanding of their resistance mechanisms. Upon analysis, we discovered that TSAREC02 had a deletion (Δ27-45) in MgrB, as well as substitutions (G206R, Y222H) in PmrB. On the other hand, TSAREC03 exhibited a long deletion (Δ84-224) in PhoP, along with substitutions (M1I, L14P, P178S, T235N) in PmrB. We employed recombinant DNA techniques to explore the interaction between the PhoPQ and PmrAB two-component systems (TCSs) and examine the impact of the mutated phoPQ and pmrB genes on the minimum inhibitory concentrations (MICs) of colistin. We observed significant changes in the expression of the pmrD gene, which encodes a connector protein regulated by the PhoPQ TCS, in the TSAREC02 wild-type (WT)-mgrB replacement mutant and the TSAREC03 WT-phoP replacement mutant, compared to their respective parental strains. However, the expressions of pmrB/pmrA, which reflect PmrAB TCS activity, and the colistin MICs remained unchanged. In contrast, the colistin MICs and pmrB/pmrA expression levels were significantly reduced in the pmrB deletion mutants from both TSAREC02 and TSAREC03, compared to their parental strains. Moreover, we were able to restore colistin resistance and the expressions of pmrB/pmrA by transforming a plasmid containing the parental mutated pmrB back into the TSAREC02 and TSAREC03 mutants, respectively. CONCLUSION: While additional data from clinical E. coli isolates are necessary to validate whether our findings could be broadly applied to the E. coli population, our study illuminates distinct regulatory pathway interactions involving colistin resistance in E. coli compared to other species of Enterobacterales. The added information provided by our study contribute to a deeper understanding of the complex pathway interactions within Enterobacterales.


Assuntos
Antibacterianos , Colistina , Colistina/farmacologia , Antibacterianos/farmacologia , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
19.
BMC Microbiol ; 24(1): 108, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566014

RESUMO

BACKGROUND: Staphylococcus aureus secretes a variety of proteins including virulence factors that cause diseases. PrsA, encoded by many Gram-positive bacteria, is a membrane-anchored lipoprotein that functions as a foldase to assist in post-translocational folding and helps maintain the stability of secreted proteins. Our earlier proteomic studies found that PrsA is required for the secretion of protein A, an immunoglobulin-binding protein that contributes to host immune evasion. This study aims to investigate how PrsA influences protein A secretion. RESULTS: We found that in comparison with the parental strain HG001, the prsA-deletion mutant HG001ΔprsA secreted less protein A. Deleting prsA also decreased the stability of exported protein A. Pulldown assays indicated that PrsA interacts with protein A in vivo. The domains in PrsA that interact with protein A are mapped to both the N- and C-terminal regions (NC domains). Additionally, the NC domains are essential for promoting PrsA dimerization. Furthermore, an immunoglobulin-binding assay revealed that, compared to the parental strain HG001, fewer immunoglobulins bound to the surface of the mutant strain HG001ΔprsA. CONCLUSIONS: This study demonstrates that PrsA is critical for the folding and secretion of protein A. The information derived from this study provides a better understanding of virulent protein export pathways that are crucial to the pathogenicity of S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Proteínas de Bactérias/metabolismo , Proteína Estafilocócica A , Dobramento de Proteína , Proteínas de Membrana/metabolismo , Proteômica , Infecções Estafilocócicas/microbiologia , Imunoglobulinas/metabolismo
20.
Appl Microbiol Biotechnol ; 108(1): 281, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570417

RESUMO

Streptococcus pneumoniae can cause diseases with high mortality and morbidity. The licensed vaccines are based on capsular polysaccharides and induce antibodies with low cross reactivity, leading to restricted coverage of serotypes. For surpassing this limitation, new pneumococcal vaccines are needed for induction of broader protection. One important candidate is the pneumococcal surface protein A (PspA), which can be classified in 6 clades and 3 families. We have reported an efficient process for production and purification of untagged recombinant PspA from clade 4 (PspA4Pro). We now aim to obtain a highly pure recombinant PspA from clade 1 (PspA1) to be included, together with PspA4Pro, in a vaccine formulation to broaden response against pneumococci. The vector pET28a-pspA1 was constructed and used to transform Escherichia coli BL21(DE3) strain. One clone with high production of PspA1 was selected and adapted to high-density fermentation (HDF) medium. After biomass production in 6 L HDF using a bioreactor, the purification was defined after testing 3 protocols. During the batch bioreactor cultivation, plasmid stability remained above 90% and acetate formation was not detected. The final protein purification process included treatment with a cationic detergent after lysis, anion exchange chromatography, cryoprecipitation, cation exchange chromatography, and multimodal chromatography. The final purification process showed PspA1 purity of 93% with low endotoxin content and an overall recovery above 20%. The novel established process can be easily scaled-up and proved to be efficient to obtain a highly pure untagged PspA1 for inclusion in vaccine formulations. KEY POINTS: • Purification strategy for recombinant PspA1 from Streptococcus pneumoniae • Downstream processing for untagged protein antigens, the case of PspA1 • Purification strategy for PspA variants relies on buried amino acids in their sequences.


Assuntos
Proteínas de Bactérias , Streptococcus pneumoniae , Humanos , Animais , Camundongos , Proteínas de Bactérias/química , Streptococcus pneumoniae/genética , Vacinas Pneumocócicas/metabolismo , Anticorpos Antibacterianos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...